Disclosures

Speakers Bureau EMD Serono

Board of Directors

Nurse Practitioners in Women’s Health (NPWH)
Objectives

• Review human reproduction and necessary components to achieve pregnancy

• Discuss the effects of weight and fertility

• Identify treatment options for the overweight fertility client
Definition of Infertility

• <35 inability to conceive after 12 months of more of unprotected intercourse.

• >35 inability to conceive after 6 months of unprotected intercourse

• Other considerations
 – History of severe endometriosis
 – Male factor fertility
 – Ovarian factors
Male & Female Factors Are Equal
Among couples with identifiable causes of infertility

Couples
- Tubal and pelvic pathology: 35%
- Ovulatory dysfunction: 15%
- Male problems: 35%
- Unexplained infertility: 10%
- Unusual problems: 5%

Women
- Tubal and pelvic pathology: 40%
- Ovulatory dysfunction: 40%
- Unexplained infertility: 10%
- Unusual problems: 10%
Hormones (gonadotropins)

GnRH

- Produced/released from hypothalamus in pulses, triggered by drop in estrogen and progesterone levels
- Targets anterior pituitary to produce/release LH/FSH
- Stress may effect production of GnRH
 - Impacts entire cycle
Hormones (gonadotropins)

- **FSH**
 - Produced/secreted from anterior pituitary
 - Release triggered by GnRH
 - Stimulates follicle development (ovaries)

- **LH**
 - Produced/secreted from anterior pituitary gland
 - Completes follicular maturation
 - Level increases 6 to 10 fold - “LH surge”
 - Rise of LH begins about 36 hours prior to ovulation
 - Post ovulation: causes “luteinization” of theca and granulosa cells - creates the corpus luteum
Menstrual Cycle

DAYS
1 7 14 21 28

FOLLICULAR PHASE LUTEAL PHASE

OVARIAN CYCLE

OVARUM

OVULATION

UTERINE CYCLE

MENSES PROLIFERATIVE SECRETORY

www.womenshealth.gov
Follicular Development / Ovulation
Modifiable Factors

• Weight management
 • Preferred BMI 19-25
 • Women with BMI >27 have higher risk of ovulatory dysfunction

• Personal habits
 • Smoking
 • Exercise
 • Caffeine and Alcohol
<table>
<thead>
<tr>
<th>Factor</th>
<th>Impact on Fertility</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity (BMI >35)</td>
<td>Time to conception increased two-fold</td>
<td>Hassan and Killick, 2004</td>
</tr>
<tr>
<td>Underweight (BMI>19)</td>
<td>Time to conception increased four-fold</td>
<td>Hassan and Killick, 2004</td>
</tr>
<tr>
<td>Smoking</td>
<td>RR of infertility increased 60%</td>
<td>Clark et al., 1998</td>
</tr>
<tr>
<td>Alcohol (>2 drinks/day)</td>
<td>RR of infertility increased 60%</td>
<td>Eggert et al., 2004</td>
</tr>
<tr>
<td>Caffeine (>250mg/day)</td>
<td>Fecundability decreased 45%</td>
<td>Wilcox et al., 1998</td>
</tr>
<tr>
<td>Illicit drugs</td>
<td>RR of infertility increased 70%</td>
<td>Mueller et al., 1990</td>
</tr>
<tr>
<td>Toxins, solvents</td>
<td>RR of infertility increased 40%</td>
<td>Hruska et al., 2000</td>
</tr>
</tbody>
</table>
Weight and Fertility
Weight and Fertility

- Anovulation
- Menstrual disorders
- Infertility
- Decreased success with ART
- Altered ovarian response and quality
- Miscarriage
- Adverse pregnancy outcomes
Mechanism

- Increased conversion of androgens to estrogen in adipose tissue (estrone)
- Decreased gonadotropins
- Disturbed LH pulsatility
- Insulin stimulates increased production of androgen from the ovaries
- Decreased SHBG levels by insulin
- Changes in the production of adipokines
Mechanism

• Gonadotropin secretion affected
 – Increased peripheral aromatization of androgens to estrogen

• Hyperinsulinemia leads to hyperandrogenemia
 – Granulosa cell apoptosis and impaired ovarian function

• Adipose tissue regulates energy homeostasis
 – Secrete adipokines to regulate physiological processes

• Sex hormone binding globulin (SHBG) and growth hormone (GH) are decreased and leptin levels increased – Increased androgens
Effects of Adipokines on Reproduction

<table>
<thead>
<tr>
<th>Adipokines</th>
<th>Serum level in obesity</th>
<th>Effects on reproduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin</td>
<td>Increases (resistance)</td>
<td>Inhibits insulin induced steroidogenesis</td>
</tr>
<tr>
<td>Leptin</td>
<td>Increases (resistance)</td>
<td>Inhibits LH stimulated estradiol production by granulosa cells</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>Decreases</td>
<td>Plasma insulin levels increase</td>
</tr>
<tr>
<td>Resistin</td>
<td>Increases</td>
<td>Causes insulin resistance</td>
</tr>
<tr>
<td>Visfatin</td>
<td>Increases</td>
<td>Increased insulin sensitivity</td>
</tr>
<tr>
<td>Omentin</td>
<td>Decreases</td>
<td>Increased insulin sensitivity</td>
</tr>
</tbody>
</table>
Obesity and Female Reproduction

• Excess weight increases the risk of menstrual abnormalities
 – Menstrual irregularities occur more frequently in women 175% of ideal body weight compared to less than 150%

• Obese women with regular menstrual cycles still may have decreased fertility
 – Dutch study 3,029 ovulatory women with a BMI >29 had a 4% lower spontaneous pregnancy rate

Practice Committee for the American Society for Reproductive Medicine. Obesity and reproduction: a committee opinion. Fertil Steril. 2015;104(5):1116-1126
Obesity and Female Reproduction

• Obese women have lower chance of conception within 1 year of stopping contraception
 – Insulin induced SHBG reduces gonadotropin secretion
 – Reduced follicular amplitude, not frequency
 – Diminished luteal progesterone levels

Obesity and Female Reproduction

• Systematic review of 27 IVF studies showed 10% lower live birth rate for women with BMI >25
 – Obesity caused by diet causes follicle apoptosis, oxidative stress, reduced embryo survival and abnormal fetal growth

• Women with regular cycles still have decreased fecundity
 – Dutch study found a 4% lower spontaneous pregnancy rate per kg increase in women with a BMI >29 kg
Obesity and Female Reproduction

• Amenorrhea, anovulation, sub fertility, and infertility increases with higher body weight

• Obese women are 3 times more likely to experience irregular menses, anovulation, androgen excess, and infertility
 – Particularly when excess weight gain occurred in adolescence
 – Adolescent obesity is associated with a 3x increased risk of lifetime nulliparity and a 4x increased risk of nulligravity

Adolescent obesity and lifetime nulliparity

Figure 1

Lifetime nulliparity and nulligravidity %

Adolescent obesity and lifetime nulliparity

Female body weight and **number of oocytes**
Miscarriage rate and BMI

![Bar chart showing miscarriage rates by BMI categories (Clinical and Total).](chart.png)
Polycystic Ovary Syndrome
Pathophysiological Characteristics of the Polycystic Ovary Syndrome (PCOS).
Pathophysiology

• Hypothalamic pituitary ovarian dysfunction

• Increased LH (pulse frequency/amplitude)
 – Increased LH:FSH ratio
 • Stimulates ovary to increase androgen production

• Insulin resistance

• Androgen excess
Multiple contributors to PCOS

• Ovary:
 – Increased androgen production from theca cells
 • Increased androgen basal levels and increased LH

• Adrenals:
 – Increased
 • adrenocortical production of androgens
 • DHEAS (40 to 70%)

• Peripheral conversion of androgen precursors

• Decreased SHBG – increased free testosterone
Multiple contributors to PCOS

- Hypothalamic-pituitary-ovarian-uterine axis (HPOU) dysfunction:
 - LH pulse amplitude/frequency higher
 - GnRH pulsatility abnormal
 - Increased LH = Increased androgenic symptoms
 - Decreased FSH = no dominant follicle
Treatment Options for the Obese Client

• Lifestyle Modification – Weight loss
 – Goal BMI < 35
 • Low glycemic/high fat yielded more improvement than high glycemic/low fat
 – Lower insulin resistance
 – Dutch study of anovulatory women lost 10kg (22lbs)
 • 90% achieved ovulation; 78% pregnancy

• Oral Agents
 – Clomiphene Citrate, Letrozole, Metformin

• Injectable Gonadotropins

Fertil Steril. 2015;104(5)1116-1126
Clomiphene Citrate

- Clomiphene Citrate
 - Used with hypothalamic pituitary dysfunction
 - Selective estrogen receptor modulator
 - Binds to receptors in the hypothalamus
 - Increases FSH/LH and causes mid cycle surge
 - Use lowest effective dose

Clomiphene Citrate

• Dosing 50mg (52%), 100mg (22%)
 – Taken for 5 days
 – Higher dose not approved
 – LH surge 5-12 days after

• Baseline ultrasound not needed

• Approximately 80% ovulate; 15% cycle fecundability

• Unexplained Infertility
 – 2-4% CC; 5-10% + IUI
Clomiphene Citrate

- **Adverse Effects**
 - Twins: 5-8%, Triplets 0.3%
 - Impairment of endometrial growth

- **Cancer**
 - No causal relationship to breast or ovarian cancer

- **Predictors of good response**
 - Lower BMI
 - Young age
 - Oligomenorrhea
 - Not amenorrhea!

** More than 6-9 cycles is rarely successful

Letrozole

• Aromatase Inhibitor
 – Increases GnRH and FSH pulsatility
 – Doses 2.5mg or 5.0 mg taken 5 days
 – Comparable to clomiphene citrate for ovulation
 • Not FDA approved
 • Half life 2 days (vs 2 weeks for Clomid)

J Obstet Gynaecol Can 2007;29:668
Fertil Steril 2006;85:1761
Letrozole vs Clomiphene Citrate

• In PCOS:
 • 5mg Letrozole (n=218), 100mg Clomiphene (n=220)
 • No follicles: 4.4 vs. 6.8
 • Ovulation rate: 67.5% vs. 70.9%
 • Preg Rate/cycle: 15.1% vs. 17.9% (p=0.72)

• Conclusions:
 • Decreased serum estradiol with letrozole
 • No advantage of letrozole over clomiphene

Begum et. Al. Fertility and Sterility 2009
Letrozole vs Clomiphene Citrate

• Clomiphene Citrate Resistant:
 – PCOS (n=64) failed ovulation on 100mg Clomiphene
 • Letrozole 7.5mg (n=32) vs. Clomiphene Citrate 150mg (n=32)
 • Ovulation: 62.5% vs. 37.5% ($p<0.05$)

 – Pregnancy rate over 6 cycles
 • Letrozole: 13/32 (40.62%)
 • Clomiphene citrate: 6/32 (18.75%) $p>0.05$

Begum et. Al. Fertility and Sterility 2009
Letrozole vs Clomiphene Citrate

• Comparable ovulation and pregnancy rates

• May benefit CC resistant pts

• Letrozole may have beneficial endometrial profile

• Majority of studies with PCOS patients

• Letrozole good option, but not FDA approved
Metformin

• Insulin sensitizing agent
 – Reduces circulating insulin/androgen levels
 – Helps to restore normal ovulation in some women
 – GI side effects are most common
• Dose should be slowly increased

Fritz MA, Speroff L. Clinical Gynecologic Endocrinology and Infertility. 2011
Clomiphene, Metformin, or Both for Infertility in the PCOS

RCT 626 women with PCOS treated for 6 months

<table>
<thead>
<tr>
<th></th>
<th>Clomiphene</th>
<th>Metformin</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovulation</td>
<td>49%</td>
<td>29%</td>
<td>60%</td>
</tr>
<tr>
<td>Conception</td>
<td>30%</td>
<td>12%</td>
<td>38%</td>
</tr>
<tr>
<td>Multiple gestation</td>
<td>6%</td>
<td>0</td>
<td>3%</td>
</tr>
<tr>
<td>Live birth</td>
<td>22.5%</td>
<td>7.2%</td>
<td>26.8%</td>
</tr>
</tbody>
</table>
Male obesity
Evidence varies as to whether it:

- Alters sperm function
- Increases sperm DNA damage
- Decreases sperm mitochondrial activity
- Induces seminal oxidative stress
- Impairs blastocyst development
- Reduces pregnancy outcome in ART
- Increases miscarriage in ART

Practice Committee of ASRM, 2015 Fertil. Steril. 104, 1116-26
Conclusions

• Obesity has a negative impact on the fertility potential

• Obese women may have menstrual irregularities and lower possibility to conceive (even from adolescence)

• There is reduced response to ovulation inducing agents

• Oocyte quality is affected and endometrial function may be impaired

• The role of men’s obesity needs further investigation

• Lifestyle modification is recommended but it increases natural conceptions only in anovulatory infertile women

